

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

The Infrared and Raman Spectra of 4-Phenylpyridine and Its Hofmann Type Complexes.

Sevgi Bayari^a; Arzu Topaçlı^a; Atilla Aydinli^b

^a Faculty of Education, Hacettepe University, Beytepe, Angara, Turkey ^b Department of Physics, Bilkent University, Bilkent, Ankara, Turkey

To cite this Article Bayari, Sevgi , Topaçlı, Arzu and Aydinli, Atilla(1994) 'The Infrared and Raman Spectra of 4-Phenylpyridine and Its Hofmann Type Complexes.', *Spectroscopy Letters*, 27: 9, 1083 — 1096

To link to this Article: DOI: 10.1080/00387019408006967

URL: <http://dx.doi.org/10.1080/00387019408006967>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**THE INFRARED AND RAMAN SPECTRA OF 4-PHENYL PYRIDINE AND ITS
HOFMANN TYPE COMPLEXES.**

Sevgi Bayarı

Hacettepe University, Faculty of Education, Beytepe, Ankara, Turkey

Arzu Topaçlı

Hacettepe University Department of Physics, Beytepe, Ankara, Turkey

Atilla Aydınılı

Bilkent University, Department of Physics Bilkent, Ankara, Turkey

ABSTRACT

The Infrared and Raman spectra of 4-Phenylpyridine are reported for the first time in the 4000-400cm⁻¹ range. Vibrational assignments have been made for fundamental modes on the basis of frequency shifts of coordinated ligand, infrared and Raman band contours and comparision with the assignments for related molecules. The infrared spectra of M (4-Phenylpyridine) Ni(CN)₄ complexes (M=Mn,Ni or Cd) are reported. Their structure consists of polymeric layers of [M-Ni(CN)₄]_∞ with the 4-phenylpyridine molecules bound to metal (M), similar to the structure found in Hofmann type host complexes.

1. INTRODUCTION

Gupta and Kusakov[1] was reported IR absorption spectrum of γ -phenylpyridine in the range of 600-2000cm⁻¹ and the characteristic frenquencies and forms of the normal

vibrations were calculated on the valence force scheme. Recently Nassimbeni et. al. [2,3] have studied the structures of the Werner clathrates formed with $[\text{Ni}(\text{NCS})_2(4\text{Phpy})_4]$ as host compounds. We have extended Gupta and Kusokov's study and report for the first time the IR and Raman spectra of 4-Phenylpyridine in the solid phase. In addition, we prepared three new 4-Phenylpyridine- metal- tetracyanonicelate complexes $\text{M}(4\text{-Phpy})\text{Ni}(\text{CN})_4$, ($\text{M}=\text{Mn, Ni or Cd}$, 4-Phpy=4-Phenylpyridine and abbreviated henceforth as M-Ni-4-Phpy). These complexes are analogous to the previously reported Hofmann type complexes [4,5].

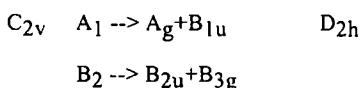
2.EXPERIMENTAL

Spectroscopically pure 4-Phenylpyridine in the solid form was obtained from Aldrich Chemical company, U.S.A and used without further purification. The complexes were prepared by the method analogous to that used for 4,4' bipyrindyl complexes [5].

The IR spectra of samples are recorded on Perkin Elmer 621 and Shimadzu FTIR 8101 spectrophotometer using mulls and KBr pellet technique in the region $4000\text{-}400\text{cm}^{-1}$. The Raman spectra of the samples in a spinning cell were excited using 514.5nm line of Spectra-Physics Model 2016-4s Ar^+ ion laser and recorded on a Jobin Yuan U 1000 spectrometer which was calibrated against the laser plasma emission lines.

3.RESULTS AND DISCUSSION

The IR and Raman spectra of 4-Phenylpyridine molecules are given in Figures 1a and 1b, respectively. The IR and Raman spectra of Cd (4.Phpy) $\text{Ni}(\text{CN})_4$ complex are given in Figures 2a and 2b, respectively. The observed frequencies in the infrared and Raman spectra of the molecule and its complexes, their approximate intensities and probable assignment are given in Table 1. The vibrational wavenumbers of the $\text{Ni}(\text{CN})_4$ group


vibrations of the M-Ni-4Phpy complexes are given in Table 2. Table 1 and Table 2 included some relevant spectral data for comparison.

3.1. 4-PHENYLPYRIDINE

4-phenylpyridine belongs to the point group C_{2v} and hence it has 57 fundamental modes of vibration: of these, 39 are planar with 20 of class A_1 and 19 of class B_1 and 18 are non-planar with 7 of class A_2 and 11 of class B_1 . All these vibrations are Raman active but only the vibrations of classes A_1 , B_1 , and B_2 are infrared active.

It has been noted that IR and Raman data on 4-phenylpyridine and its complexes are not plentiful in the literature. The only available IR data on solid γ -phenylpyridine was reported by Gupta [1] who carried out a normal coordinate analysis using a valence force field. However, he only gave the characteristic frequencies and forms of the normal vibrations of γ -phenylpyridine which have been assigned to A_1 and B_1 species, in the range of $600-2000\text{cm}^{-1}$. In addition, some IR bands of γ -phenylpyridine at 1640, 1597, 1285, 1195 and 1170cm^{-1} have been assigned to both in A_1 and B_1 symmetry species. Also, he assigned twice the 1006cm^{-1} and 1078cm^{-1} bands to A_1 and B_1 symmetry species, respectively. Therefore, we did not use his assignments in present work. In this study, the vibrational assignments of 4-phenyl pyridine are analysed using IR and Raman spectra of the solid sample and its metal complexes.

The C_{2v} fundamental modes of the 4-phenylpyridine and pyridine each give rise in crystalline biphenyl (D_{2h} symmetry) to two modes; a "g" and a "u" mode. Since, all g modes are infrared active and all u modes are Raman inactive, no ambiguity is likely to arise in referring to the vibrations in terms of the C_{2v} classes from which they are derived. The D_{2h} and C_{2v} fundamentals are related as follows:

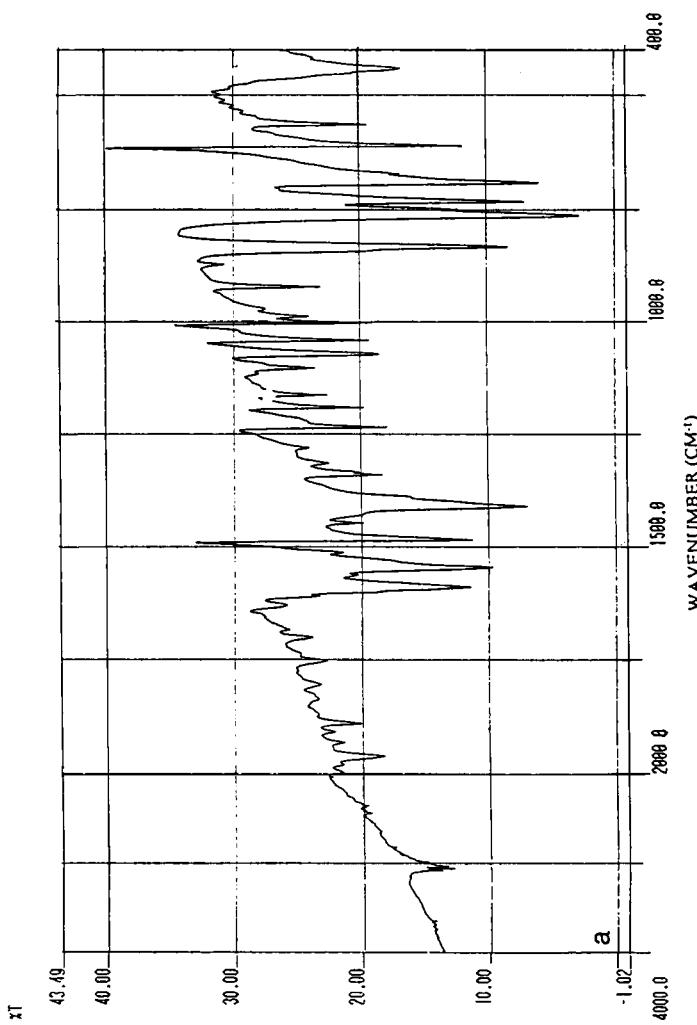


Figure 1a. Infrared spectrum of 4-phenylpyridine molecule.

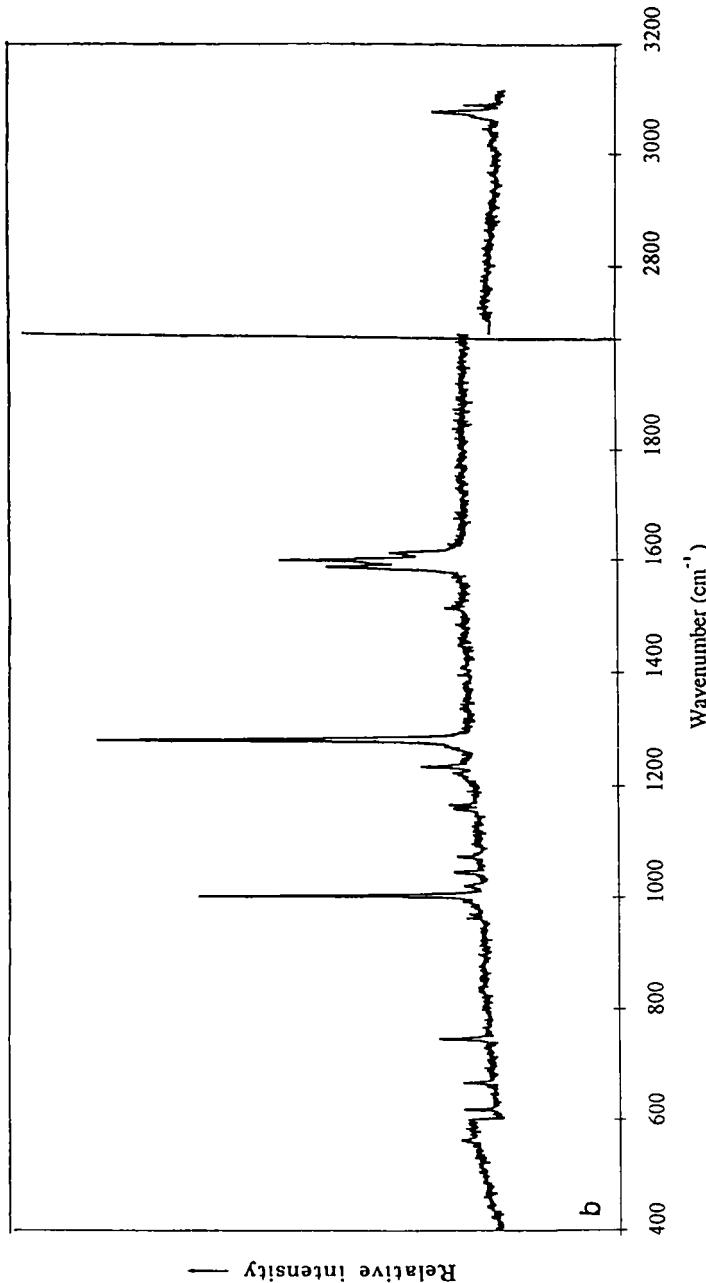


Figure 1b: Raman spectrum of 4-phenylpyridine molecule.

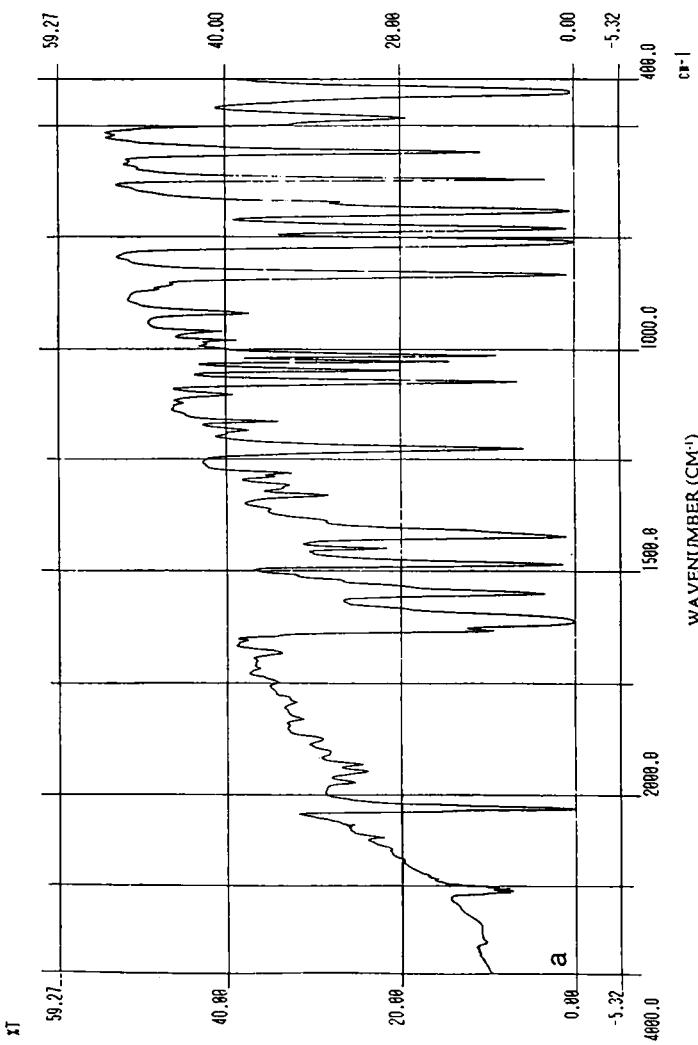


Figure 2a: Infrared spectrum of Cd (4-phenylpyridine) Ni (CN)₄ complex.

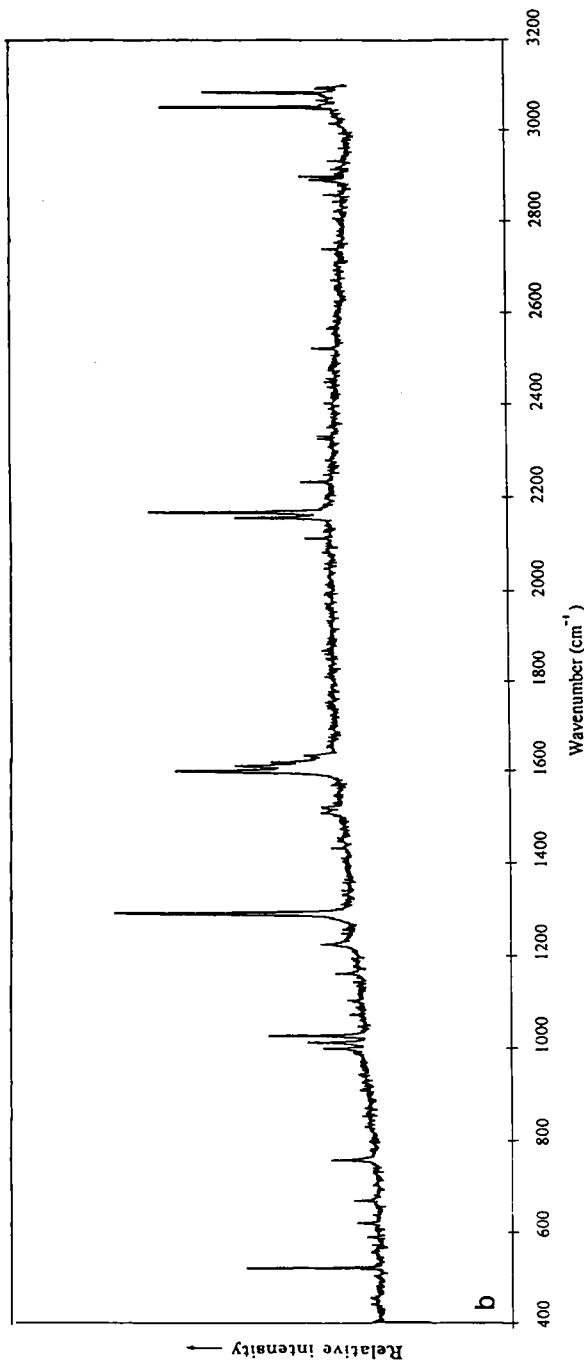


Figure 2b: Raman spectrum of Cd(4-phenyl)Ni(CN)₄ complex.

Table 1.

The fundamental vibrational wavenumbers (cm^{-1}) of 4-phenylpyridine

Symmetry and Description Mode	Biphenyl ^a		Pyridine ^b		4-phenyl pyridine (This study)		Mn	M-Ni-4 phenyl pyridine		
	IR	Raman	IR	IR	Raman	IR		IR	Raman	Ni
A₁										
$\nu(\text{CH})$	3088 s	-	3053 w	3083w	3083m	3084w	3085w	3084s	3085w	3085w
$\nu(\text{CH})$	3054 s	3055	3053 vw	3060m	3062m	3061m	3061m	3064m	3064m	3064m
$\nu(\text{CH})$	3047 s	-	3036 w	3038w	3041w	3040w	-	3041w	3041w	3041w
$\nu(\text{CH})$	-	-	-	3028w	3031w	3030w	3031w	3033m	3033m	3030w
ν_{ring}	1597 vw	1605 vs	-	1609vw	1614s	-	1620m	1621m	-	-
ν_{ring}	-	-	-	1599vw	1601vs	-	-	1600vs	-	-
ν_{ring}	-	-	1582 vs	1588s	1587s	1610vs	1611vs	1612s	1613vs	1613vs
ν_{ring}	1481 m	-	1482 s	1512m	1514m	1518w	1520m	1519m	1520w	1520w
ν_{ring}	-	-	-	1484s	-	1475vs	1476vs	1478w	1476vs	1476vs
$\delta(\text{CH})$	-	-	-	1410ms	1396w	1421s	1422vs	1411m	1424m	1424m
$\nu_{\text{ring}} + \delta(\text{CH})$	-	1273 vs	-	1279w	1283vs	1288w	1288w	1292vs	1290w	1290w
$\delta(\text{CH})$	1179 w	1206 w	1217 s	1233s	1224m	1218vs	1218vs	1225m	1226vs	1226vs
ν_{ring}	1038 w	1032 m	1029 s	1042s	1044m	1044s	1044s	1047w	1045s	1045s
ring breathing	1005 m	998 vs	990 s	1001s	1002vs	1011s	1011vs	1014s	1013vs	1013vs
δring	-	-	-	832vs	839w	830vs	830w	830w	830w	830w
$\delta\text{ring} + \nu_{\text{ring}}$	-	738 w	-	762vs	747s	758vs	758s	758s	759vs	759vs
δring	610 w	607 w	604 m	608s	618s	618vs	619vs	621m	621vs	621vs
δring	460 m	-	-	438s	440w	481ms	482ms	481w	482ms	482ms
δring	-	-	-	-	-	-	-	-	-	-
B₁										
$\nu(\text{CH})$	3076	-	3079 m	-	3070s	3074w	3073w	3075s	3075w	3075w
$\nu(\text{CH})$	3038	-	3026 w	3008w	3014mw	3014m	3013w	3016mw	3016mw	3016mw
$\nu(\text{CH})$	-	-	-	-	-	-	-	-	-	-
ν_{ring}	-	-	-	1630w	1630w	-	1632w	1635w	-	-
ν_{ring}	1570 s	-	1574m	1543s	1540w	1547s	1549s	1545w	1551s	1551s
ν_{ring}	1435	1459	1488vs	1447w	1449m	-	-	1453w	-	-
ν_{ring}	1343	-	1355w	1341mw	1337m	1331w	1331m	1332w	-	-
ν_{ring}	-	-	-	1314mw	1302m	1307mw	1308mw	1303w	1307mw	1307mw
$\delta(\text{CH})$	1265 m	-	1235w	-	1236m	-	-	1231m	-	-
$\delta(\text{CH})$	1168	1160	1147s	1190m	1191w	1181w	1181w	1189mw	1182w	1182w
$\delta(\text{CH})$	1152	-	-	1163m	1166m	1159m	1159m	1163m	1159m	1159m
$\delta(\text{CH})$	1089	1097	-	1104ms	1096w	1098m	1100m	1103w	1100m	1100m
ν_{ring}	-	-	1068s	1073s	1073m	1072s	1073s	1071m	1075s	1075s
$\delta(\text{CH})$	-	-	-	1017mw	1020m	1024 s	1025s	1027ms	1026s	1026s
δring	-	-	650w	868m	870w	-	868w	870w	-	-
δring	550	-	-	561s	562m	557s	557s	557w	558s	558s
δring	-	329	-	-	-	-	-	-	-	-
δring	-	-	-	-	-	-	-	-	-	-
B₁										
$\gamma(\text{CH})$	982	-	939m	-	983w	973mw	978mw	979mw	978mw	978mw
$\gamma(\text{CH})$	966	-	-	965w	962m	959mw	959mw	-	959mw	959mw
$\gamma(\text{CH})$	902	-	882vw	918m	915w	918m	918m	920w	919m	919m
$\gamma(\text{CH})$	-	-	-	887w	-	887w	-	-	-	-
$\gamma(\text{CH})$	731	-	746	731s	731m	729vs	731s	731w	731s	731s
γ_{ring}	698	-	703vs	687vs	694m	691vs	691vs	693w	691vs	691vs
γ_{ring}	460	-	405m	-	399m	-	-	391m	-	-
γ_{ring}	-	-	-	-	-	-	-	-	-	-
γ_{ring}	-	-	-	-	-	-	-	-	-	-

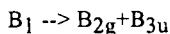

^{a,b} taken from reference [4,5], respectively. vs: very strong, s: strong, m: medium, w: weak, vw: very weak.

Table 2

The Vibrational wavenumbers (cm^{-1}) of the $\text{Ni}(\text{CN})_4$ group of the M-Ni-4-Phpy complexes and in other host complexes.

Assignment	M-Ni-Py ^a			M-Ni-bipy ^b			M-Ni-4-Phpy			Relative Intensity	
	Mn	Cd		Ni	Cd		Ni	Mn	Cd		
		Cd	Ni		Cd	Ni			Cd	Ni	
A_{1g} $\nu(\text{CN})$		(2172)	(2186)		(2166)			(2169)			vs
B_{1g} $\nu(\text{CN})$		(2160)	(2177)		(2153)			(2156)			s
E_u $\nu(\text{CN})$	2155	2164	2170		2147	2164		2151	2185		vs
$\nu(\text{CN})$	2144	2111	2139		2105	2132		2101	2122		vw
E_u $\nu(\text{NC})$	545	543	550		540	552		543	549		vw
A_{2u} $\nu(\text{NICN})$	-	-	-		444	451		- ^c	- ^c		vw
E_u $\delta(\text{NICN})$	432	425	441		426	438		425	426	431	vs

The bands observed in the infrared spectra are given without parentheses, the bands observed in the Raman Spectra are given in parentheses.
^{a,b} Taken from reference, [4, 5] respectively. ^c Overlapped with 4-phenylpyridine band.

The comparison with the corresponding assignments of biphenyl [6] and pyridine [4], has helped in carrying out the vibrational assignments. In addition, some 4-phenylpyridine vibrational modes observed in the IR and Raman spectra of metal complexes are found to shift towards higher frequencies compared to free molecule. For these A_1 modes the direction of the motion of the nitrogen atom, is in the same direction as M-N bond. Therefore, we suggest that a major upward shift in these A_1 modes may arise from coupling with the M-N stretching mode. Similar shifts had been observed in the 4,4'-bipyridyl [5] and pyridine [4] complexes and explained by coupling with low frequency vibrations, particularly the M-N stretching frequency. Since the vibration frequency of $\nu(M-N)$ is found in the range $200-300\text{cm}^{-1}$ [7-10], we could not observe this vibration band in the IR and Raman spectra of the metal complexes. However, the effect of the coupling is observed especially at the low frequencies of A_1 modes[4]. This result was also used as a basis for the vibrational assignments of the 4-phenylpyridine molecule.

We tentatively assigned the observed $\nu(CH)$ bands by comparison with those found for the biphenyl and pyridine molecules.

A_1 symmetry species

Steele and Lippincott [6] assigned IR bands at 1597, 1481, 1179, 1038 and 1005cm^{-1} and Raman bands at 1273 and 738cm^{-1} of the biphenyl molecule as a fundamental vibrational mode of A_1 symmetry species. We observed similar IR bands at 1609, 1512, 1233, 1038 and 1001cm^{-1} and Raman bands at 1283 and 747cm^{-1} of the 4-phenylpyridine shifted to higher frequency on coordination. Therefore, they are

assigned to A_1 type fundamentals which are compatible with those for the biphenyl. The ν_{15} mode (the out-of phase component of the ring breathing mode) is assigned to a strong IR band 1001cm^{-1} . This is because we observed the corresponding band at 1002cm^{-1} as a very strong band in the Raman spectrum of crystalline 4-phenylpyridine. Our assignment is also compatible with those for the biphenyl (1005cm^{-1}) [6] and pyridine (990cm^{-1}) [4] molecules. As discussed above we could not observe $\nu(\text{M-N})$ band in the IR and Raman spectra of metal complexes. However, the effect of the coupling is observed especially at the lower frequencies of A_1 symmetry species. Steele and Lippincott [6] have assigned the band at 550cm^{-1} to the A_1 fundamental for the biphenyl molecule. However, Dale [11] has assigned the 550cm^{-1} band to the lowest B_2 ring deformation and the 606cm^{-1} band to the A_1 fundamental. We observed strong IR bands at 608cm^{-1} and 561cm^{-1} , in the spectrum of 4-phenylpyridine. The 608cm^{-1} band shifted to a higher frequency ($\sim 11\text{cm}^{-1}$) on coordination; however, the 561cm^{-1} band slightly shifted. As discussed above the A_1 modes tend to show increases in frequency on coordination. Therefore we assigned the 608cm^{-1} band to A_1 symmetry mode (ν_{19}) in agreement with the assignment of Dale [11]. As inferred from table 1, the IR band at 438cm^{-1} shifted to a higher frequency ($\sim 44\text{cm}^{-1}$) on coordination. This band is assigned to ν_{20} . We observed similar shifts ($\sim 45\text{cm}^{-1}$) in the infrared spectrum of $\text{Cd}(\text{4-Phpy})\text{Cl}_2$ complexes. The information about these complexes will be given in detail elsewhere.

B_2 symmetry species

The B_2 -type fundamentals of 4-phenylpyridine are chosen and assigned by a comparison with the biphenyl [6] and pyridine [4] molecules. This leaves only the in-plane ring deformation vibrations which belong to the B_2 symmetry species. We

observed a strong IR band at 561 cm^{-1} in the spectra of 4-phenylpyridine is assigned to the lowest B_2 ring deformation in agreement with the assignment of Dale [11]. Katon and Lippincott [12] have assigned these frequencies of 302 cm^{-1} and 140 cm^{-1} for the biphenyl molecule. We could not observed IR bands in the range $200\text{-}300\text{ cm}^{-1}$.

B₁ symmetry species

The highest $\gamma(\text{CH})$ vibration frequency is expected to be about 980 cm^{-1} by comparison with the biphenyl molecule. This mode usually gives rise to quite weak absorption in contrast to the lower frequency $\gamma(\text{CH})$ modes of this class. We observed a weak IR band at 985 cm^{-1} as out-of plane C-H deformation. Also, the strong infrared band in the spectra of 4-phenylpyridine at 731 cm^{-1} are readily assigned to lower out-of plane C-H deformation frequency.

A₂ symmetry species

These vibrations are infrared inactive but Raman active for free molecule and are infrared active in principle in the crystal. Steele and Lippincott [6] have assigned the band at 841 cm^{-1} to the A_2 fundamental for the biphenyl molecule. Therefore we assigned the Raman band observed at 839 cm^{-1} to out-of-plane CH deformation.

There are some uncertainties over the assignments of A_2 symmetry species for the biphenyl and pyridine molecules. Therefore it is very difficult to find the corresponding modes for 4-phenylpyridine to assign the vibrational bands as the A_2 fundamentals.

3.2. The Ni(CN)₄ GROUP VIBRATIONS

The assignment of the observed bands in Table 2 is made on the basis of D_{4h} symmetry assumed for Ni(CN)₄ group in the M-Ni-4-Phpy complexes. The $\nu(\text{CN})$ and $\delta(\text{NiCN})$

vibrational wavenumbers are found to be similar to those of Hofmann type complexes [4,5] showing that the $[M-Ni(CN)_4]_\infty$ layers have been preserved. Since we observed only one $\nu(CN)$ (E_u) band in the IR spectrum and the other two $\nu(CN)$ (A_{1g} and B_{1g}) bands in the Raman spectrum of the Cd-Ni-4-Phpy complex, we propose a square planar environment around the tetracyanonickelate ion.

REFERENCES

1. V.P.Gupta and M.M. Kusakov. 2h. Prikl. Spectroskopii Akad. Nauk Belorvssk. 3(5) (1965) 428.
2. L.R.Nassimbeni, M.L. Niven and M.W.Taylor, J.Chem, Soc. Dalton Trans., (1989) 119.
3. L.R.Nassimbeni, M.L. Niven and M.W. Taylor, J.Coord. Chem., (1989) 339.
4. S.Akyüz, A.B.Dempster, R.L. Morehouse and S.Suzuiki, J.Mol. Structure, 17 (1973) 105.
5. A.Sungur and S.Akyüz, J.Inclusion Phenom., 5 (1987) 491.
6. D.Steele and E.R.Lippincott, J.Mol. Spectroscopy, 6 (1961) 238.
7. R.J.H.Clark and C.S. Williams, Inorg. Chem., 4 (1965) 350.
8. Y.Saito, M.Cordes and K. Nakamoto, Spectrochim. Acta Part A, 28 (1973) 1459
9. K. Nakamoto, Angew. Chem. (Int. Ed. Engl.), 11 (1972) 666
10. M. Goldstein and W.D. Unsworth, Inorg. Chim. Acta, 4 (1970) 342

11. J. Dale, *Acta Chem. Scand.*, 11 (1957) 640

12. Katon and E.R. Lippincott, *Spectrochim. Acta*, 15 (1959) 627.

Date Received: June 17, 1994

Date Accepted: July 22, 1994